The Berger–Wang formula for the Markovian joint spectral radius

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the joint spectral radius

We prove the `p-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of [6], [7] and [10]. Let A be a Banach algebra with the unit element denoted by 1. Let a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte spectrum of a, i.e. λ = (λ1, . . . , λn) / ∈ σ(a) if and only if there exist u1, . . . , un, v1, . . . , vn ∈ A suc...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

On explicit a priori estimates of the joint spectral radius by the generalized Gelfand formula

In various problems of control theory, non-autonomous and multivalued dynamical systems, wavelet theory and other fields of mathematics information about the rate of growth of matrix products with factors taken from some matrix set plays a key role. One of the most prominent quantities characterizing the exponential rate of growth of matrix products is the so-called joint or generalized spectra...

متن کامل

Regular Sequences and the Joint Spectral Radius

We classify the growth of a k-regular sequence based on information from its k-kernel. In order to provide such a classification, we introduce the notion of a growth exponent for k-regular sequences and show that this exponent is equal to the joint spectral radius of any set of a special class of matrices determined by the k-kernel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.01.022